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The formulation~ methods, and results of a solution of the problem of flow of a 
nonlinear viscoelastic fluid in a channel with helical knurling are presented. 

Research in the field of the intensification of heat-transfer processes has shown that 
one of the most efficient and constructively convenient to implement methods of enhancing 
convective heat and mass transfer is to use artificial turbulizers in the boundary region 
of flow. The well-known published experimental data on intensification using annular or 
helical internal ribbing in pipes and using spiral coil inserts [1-3] permit the conclu- 
sion that they are fairly efficient. Helical knurling on the surface of a pipe (Fig. i) 
can also increase the intensity of heat-transfer processes. This is especially important 
for flows of high-viscosity media, characterized by low Reynolds and Nusselt numbers. 

In the solution of problems associated with the investigation of convective heat and 
mass transfer in channels, the hydrodynamic part of the problem is particularly complicated. 
It therefore seems important to isolate that part, which is associated with determining the 
distribution of the velocity vector in the channel. 

Let us consider the problem of determining the velocity profile that is formed in the 
laminar flow of a nonlinear viscoelastic fluid in a channel with helical knurling. A model 
of the differential type is used to describe the rheological properties of the fluid. The 
stress tensor at time t is represented by a nonlinear symmetric tensor functional of the 
history of deformation and can be expanded in a Taylor series in the vicinity of t = 0 
with respect to N-th order White-Metzner kinematic tensors B N [4], 

BN+I =-~(BN)--(BN'vVt)--(vV'BN), 
B1 = 2D, 

w h e r e  D = (TV + 7 v t ) / 2  i s  t h e  d e f o r m a t i o n - r a t e  t e n s o r .  

In general, the system of equations describing this problem and including the equations 
of motion and continuity has the form 

(i) 
(V.gradV) l = - -  - -  grad P -[- 1 div (To), 

P p 

div (V) = 0, ( 2 )  

Vtb=  0' ( 3 )  

where T o is the stress tensor deviator. 

All of the boundaries of the channel under consideration can be represented by a family 
of helical surfaces, and a helical channel, as shown in [5], possesses one-parameter helical 
group symmetry, regardless of the shape of its cross section. Because of this, the velocity 
field being sought can be assumed to be independent of the coordinate directed along the 
channel axis (q3). 

We introduce nonorthogonal helical coordinates [6], related to cylindrical coordinates by 
the equations 
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I. Calculated profiles of the axial compo- 
nent of the velocity vector: a) radial cross sec- 
tion A-A; b) annular cross section B-B; 1) S/D = 
0.72; 2) 1.79; 3) 2.86. 

ql = r, q2 = ~ - - k z ,  q3 = z. (4)  

components  by t h e  v e l o c i t y  v e c t o r  w i l l  t hen  be r e l a t e d  to  t h e  The contravariant helical 
cylindrical components by the equations 

V 1 = V~, V ~ = V~--kV~, V 3 = V~. (5)  

The stress tensor for the investigated fluid will have the form 

= - -  Pl  + ~ (In) B~ + ~ (I~) B2, 
where 12 = t r ( B ~ ) .  

We shall assume that the flow under consideration is viscosimetric, in the subclass of 
helical flows [4]. The dependence of the material functions ~ I and ~2 on I s can then be 
neglected. 

We approximate the behavior of the functions ~i and T2 by power-law functions, 

~i (I~) = K~ (I2)~+, l = 1,----2o 
Statement of the Problem in the Galerkin Approximation The generalized solution of the 

initial system of hydrodynamic equations (1)-(2) with the boundary condition (3) must satisfy 
the integral equation 

s {(P (V-grad V).h) - -  (div (V ~ .h) + (grad P -~}  dL = O, 
L 

where h is an arbitrary element of the space of solenoidal vector functions H~(~). The boun- 
dary condition (3) is then satisfied for h, as well, i.e., hlb = 0. For a sequence of basis 
functions h(I), h(Z) ..... h (n) belonging to the space H~(~), the following must be satisfied: 

f S { %B~ (V(n)): D (h(h)) "6 %B2 (V (n)) :D (h(h)) + (p (V(n) grad V~n)) + grad P) h(~) } d~ = 0. ( 6 ) 

By analogy with [7], the system (6), representing a functional operator L o defined by the ex- 
pression (LoV, h) = 0, can be expressed in terms of two operators L I and L 2 for which the re- 
lationships (LxV, h) = 0 and (L2V , h) = 0 are satisfied. This enables us to take only 8P/3q 3 
into account in the system (6), which was proven in [7]. 

We thus have 

- - - [ -  
(L1v. h)= J] L oql Oql (ql)2 Oq2 / + 
(2 O(w,.)+kv3(n, ) 2 1, o 

+ ql Oq2 - -  (ql)----~ [ (q) ~ ( V ' r  

OVl(n)~ Oh2(h) (~W2(n) .. OV a(n) 2____ Vl(n)l Oh2(k) -t- 
-{-kV3('~)) + ' -~q  ~ ) O---qT -6 ((A + l)--~-q2 -6 Al~-Oq, -6 ql ] Oq----f- 

+ -$-i-- [ OVa( })2 J] h1(I~) "6 P (V(~) grad V(,,)hh~(k) "6 9 (V(") grad V("))~ h '(~) } dO 

(7)  

= 0 ,  
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Fig. 2. Calculated profiles of the radial com- 
ponent of the velocity vector (notation same as 
in Fig. i). 

[ [A ov+, or,,.>] +,,> + 
(LxV, h) = ~ L [ OqX + k (qx)' Oqx J Oq~ (qt), OqS (8) 

-k- AK OV*~) -+- + hm~> d~2 = O. 
Oq~ ql ~ l Oq 3 

With a l l o w a n c e  f o r  t h e  h e l i c a l  symmetry o f  f low d e m o n s t r a t e d  in  [ 5 ] ,  one can show t h a t  
@p/~q3 = C = c o n s t .  We d e t e r m i n e  ~P/aq 3 using Eq. (8): 

Oq 3 Q + Oql q / Oq 1 

( A OV3 + A k  OV~" + '2k  ) OV3]} 
+ (q~)2 0q~ Oq2 ~ v~ --Oq' dO. 

Statement of the Problem in the Vorticity-Stream Function Form. We introduce new func- 
tions into the system (1)-(3) under consideration: the stream function 4, related to the com- 
ponents V i and V 2 by the equations 

1 O ,  __ V1 ' 1 O* 
qt Oq~ ql Oq~ 

and a third contravariant component ~3 of the vorticity. 
equations then takes the form 

- -  = V 2 ,  

The initial system of differential 

2pqX ~url(V.grad V)13 = 02T~ 0 ~ [ A T O --  
(Oq~)Z H- Oq~Oq~ - t ~ 21 

_ kTO23 _ TO1 ] 02 A o q_ 

(qt)3 q, Oq2 q~ (q~)3 , 

(9) 

differential equations for the components of the deviator of the stress tensor, T~j (i = 
i, 3; j = I, 3), are given in the Appendix; 

2q ~ ~ (q~)2 kV 3 _  q----;- Oq ~ _ q~ (Oq~) s , 

OP 
Oq3 ql Oq~ qtePl Oql - -  kqt ( ql Oql q- (11) 

-[- 0 [ ( A 2 0 V 3 -  r Ak O ~ * q l  _]___2k O, ]. 
Oq ~ (q~)~ 8q 2 OqtOq 2 (q~)* Oq ~ 
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Fig. 3. Calculated profiles of the centrifugal 
component of the velocity vector (notation as in 
Fig. 1). 

with the boundary conditions ~Ib = 0; V3[b = 0; a~L_ll a3~0 3~0 b = 0; b = 0. The continuity condi- 
! 

tion is then satisfied identically. 

As a result, we obtain a system of differential equations (9)-(11) for the following 
unknowns: the stream function, three contravariant components of the ve]ocity vector V 3, 
and the contravariant component ~ of the vorticity. 

In the given case, 8P/Sq 3 = const can be found from Eq. (ii), 

Oq 3 = - ~  .[ q~ Oq ~ q~cp 1 A ~ - -  kq ~ - q-- Oql Oql ql Oql 

0 [ ( A~ OV 3 Ak O~ + 2k O~ ]} 
Oq~ (ql)2 aq~ qi OqlOq2 (ql)2 Oq~ 

d~ 

Algorithm for Solving the Problem and Results of Calculations. The method of finite 
elements was used to solve the systems of hydrodynamic equations in both the Galerkin ap- 
proximation and the vorticity-stream function approximation. Algorithms for solving the 
stated problem were constructed on the iteration principle, including iterations to refine 
the approximate values of the components V I and V 2 of the velocity vector (internal itera- 
tions) and 8P/Sq 3 (external iterations). 

For both methods we considered the case of a model fluid with parameters %~ = 0.9 (Pa" 
sec) and %o = 0.01 (Pa.sec2). The pipe diameter was D = 0.014 m and d/D = 0.720. The pitch 
S/D of the helical knurling was varied in the range 0.72-2.86. 

In Figs. 1-3 we show the results of a calculation of the components of the velocity vec- 
tor in dimensionless form for radial and annular cross sections of a channel (Fig. i) with 
helical knurling. For convenience in presenting and analyzing the results, the distributions 
obtained for the components of the velocity vector were transformed to the cylindrical coor- 
dinate system using Eqs. (4) and (5). 

As seen from Fig. I, the curve of the axial component V z of the velocity vector has a 
parabolic shape, and has a more bulging character in the vicinity of a rib of the helical 
knurling. A direct relationship is noted between the maximum value of V z and the geometri- 
cal dimensions of the channel. For example, the largest value (Vz)ma x is reached for the 
largest ratio S/D = 2.86. The asymmetric distribution of the calculated curve of the compo- 
nent V z relative to the axis of the helical channel (Fig. la) is explained by an increase in 
shear stress in the vicinity of a knurling rib and indicates the manifestation of viscoelas- 
tic properties. 

An annular cross section (Fig. ib) is also characterized by a parabolic distribution of 
V z. Some asymmetry of the curve relative to the radial channel cross section A-A (Fig. la) 
may be ascribed to nonuniformity of the distribution of shear stress ahead of a rib of the 
helical knurling and behind it. 

The radial component V r of the velocity vector has its greatest influence in the wall re- 
gion of flow. It decreases toward the center and V r becomes negative. 
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The nature of the distribution of the calculated component V r in the channel cross 
sections under consideration enables us to conclude that forces repelling the flow from 
the channel walls toward the center develop in the wall regions. The point at which V r 
reaches a maximum is also found to depend directly on the geometrical characteristics of 
the channel. As seen from Fig. 2, with a decrease in the pitch of the helical knurling, 
the maximum of V r shifts toward the center of the channel (dashed lines) and its absolute 
value increases. 

A similar dependence can be noted for the component V~ of the velocity vector (Fig. 3). 
Here the maximum of V~ also shifts toward the center with a decrease in the pitch of the 
helical knurling (dashed lines). 

The calculated distributions of the components V r and V~ in the annular cross section 
of the channel contain bends in the region adjacent to the rib of the helical knurling. 
This may be explained by the manifestation of nonlinear viscoelastic properties of the fluid 
and indicates a sharp increase in shear stress in the immediate vicinity of the rib. 

These calculated distributions of the components Vr, V~, and V z enable us to conclude 
that mixing of fluid layers occurs in the wall region of flow, the intensity of which de- 
pends directly on the geometrical characteristics of the channel. 

To describe the influence of the rheological properties of the fluid on the hydrodynamic 
characteristics of the flow, we made calculations for media with the same parameter ~i0. In 
Fig. 4 we give curves of the dimensionless components V z (Fig. 4a) and V r (Fig. 4b) of the 
velocity vector for a non-Newtonian, a pseudoplastic, and a nonlinear viscoelastic fluid. As 
seen from Fig. 4, nonlinear viscoelasticity causes a more even distribution of V z over the 
channel cross section. The maxima of the V r curve are shifted most toward the channel wall 
in this case, and their absolute values are higher than for the Newtonian and pseudoplastic 
media. The V z and V r curves for a pseudoplastic fluid occupy an intermediate position be- 
tween those for a Newtonian and a nonlinear viscoelastic fluid. 

The curves of the components of the velocity vector obtained by solving the stated prob- 
lem in the Galerkin approximation and in the vorticity-stream function form are almost iden- 
tical. But it must be noted that the solution of the problem in the vorticity-stream func- 
tion form is distinguished by being more cumbersome and less stable in the course of the cal- 
culations, which is explained by the more complicated nonlinear form of the free term in the 
system of differential equations (7)-(11). For example, two or three iterations were needed 
to provide a relative error s = 10 -3 in the external block (calculation of 8P/Sq 3) when sol- 
ving the problem in the Galerkin approximation, whereas five to seven iterations were needed 
to solve it by the variation method. About the same relationships were noted in calculations 
for the internal block (calculation of V I and V 2 in the Galerkin approximation and of ~ and 
w 3 in the solution by the variation method). The cost in computer time to solve the prob- 
lem increased accordingly. 
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Fig. 4. Influence of the rheological properties of the 
fluid on the hydrodynamic characteristics of flow: a) 
axial component of the velocity vector in cross section 
A-A; b)radial component of the velocity vector in 
cross section A-A; I) Newtonian fluid; 2) pseudoplas- 
tic fluid; 3) nonlinear viscoelastic fluid. 
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APPENDIX 

The components of the deviator of the stress tensor T o are 

0,) 
T~ ~ = 2% q~ Oq ~ , 

T?3 = T~ = qJx 2r x - -  2kq x kV3. q~ aq~ (aqD 2 

T~2 = 2 (q,)2 ~1 kV3' qX aql oq" 

( 0V' ~2. 

T~ T O [ OV3 
~ -  3 2  = ~1 A aq 2 

'2 a,, 
; 

OF a ~,  
+ aql ] '  

- - - - k q x  0~ +2k. a~ ] --2~pzAk((ql)2( aVs ~2 ( OV ~ ~2~. 
aqlaq - - - - T  Oq, \ aq~ / + A \ ~ /  ] ,  

r O II ~3 = 2k2q1%Vt--2A2q% ~ Oql ] 
2A ( OV 8 ~2 

NOTATION 

A = i + (kql)2; B N, Nth-order White-Metzner kinematic tensor; D, deformation-rate ten- 
sor; Hi, space of solenoidal vector functions; h, element of the space Hi; 12, 13, second 
and third invariants of the deformation-rate tensor; I, identity tensor; k = 2~/S; L 0, L I, 
L 2, linear operators: L, volume of space included between channel cross sections; n ~ normal 
to the channel contour; P, pressure; (ql, q2, q3), helical coordinate system; Q, flow rate; 
(r, r z) cylind_rical coordinate syst_em; S, pitch of helical knurl~ng; T~ deviator of th E 
stress tensor; V, velocity_vector; VV, velocity gradient tensor; VV t, transposed tensor V V; 
V I, V 2, V 3, components of V in the helical coordinate system; Vr, V m, V z, components of V 
in the cylindrical coordinate system; p, density; o, total stress tenser; t ~ tangent to the 
channel contour; ~i' ~2, material functions of 12:~10 , ~20, values of ~ and ~2 as 12 § 0; 

~, stream function; ~, region of transverse channel cross section; m2, third contravariant 
component of the vorticity vector. Indices: b, boundary of ~. 
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